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Atomic scale simulations of polymer materials is a topic of interest since it permits to reduce costly
experiments to determine their physicochemical properties. In this context, modeling heterogeneously
ordered multichain systems such as amorphous polymers, remains a challenging problem. A recently
proposed two-step method consists of iteratively generating the structures using a simplified energy
model, and subsequently relaxing the system, considering a more accurate model, in order to reduce its
potential energy. This work proposes an improvement of this method by integrating a novel relaxation
technique, which applies analytical rebridging moves inspired by robotics. A comparative analysis using
models of amorphous polyethylene with different sizes and densities shows that the rebridging scheme
described here is very effective for the simulation of long alkanes.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The development of simple theoretical strategies to model and
study many fundamental problems of complex soft matter by
means of computer simulations is a topic of growing interest within
Polymer Physics [1e5]. Within this field, conventional atomistic
Molecular Dynamics (MD) andMonte Carlo (MC) simulations based
on force-field potentials are very useful to describe the behavior of
medium- and long-polymer chains in solution. Nevertheless, it is
well known that the application of these simulation techniques to
heterogeneously ordered multichain systems, e.g. amorphous
polymers, is very unpractical because the high density and the
connectivity of the molecular chains in macromolecular systems
reduce significantly the efficiency of these algorithms [6]. In order
to overcome these difficulties, many approaches have appeared in
the literature. The simplest ones consist on energy minimization of
microstructures that are generated randomly [7] or using chain
growth techniques based on rotational isomeric states [8].
However, in recent years more sophisticated procedures have been
reported. In our opinion, among the most remarkable are those
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based on the generation of structures of low density, which are
slowly compressed until the desired density is reached [9,10], the
geometric optimization using heuristic search algorithms [11,12],
the construction of polymer chains by polymerization of monomers
previously equilibrated in a simulation box [13], the construction of
high coordination lattices [14,15], and the application of advanced
chain-connectivity altering algorithms like end-bridging [16,17],
directed end-bridging [18] and double-bridging [19,20]. In recent
works, we reported an alternative strategy, denoted SuSi (Structure
Simulation), for generating microstructures of amorphous poly-
mers avoiding atomic overlaps and obeying the proper torsional
distribution. The method is based on a two-step strategy. First,
atomistic models are generated atom-by-atom using an algorithm
that minimizes the energy associated with the torsional degrees of
freedom [21,22]. After this, the non-bonding interactions of the
generated structures are relaxed. Three different relaxation algo-
rithms were implemented and tested. The simplest one corre-
sponds to a typical minimization algorithm, which was found to be
ineffective [21]. The second relaxation algorithm was derived from
the geometric aspects of the Configuration Bias (CB) MC method
[23]. In this procedure, a randomly selected polymer chain is cut at
an arbitrary position and, sequentially, rebuild bond-by-bond
[24e26]. For each bond to be appended a set of K torsional angles is
randomly chosen between 0 and 2p, the energy associated to each
of the K positions being evaluated. One of the positions is randomly
chosen with probability proportional to its Botzmann weight.
Although this relaxation algorithm was found to be very effective
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Fig. 1. A molecular chain of 9 bonded atoms (top) can be seen as a 6R robotic manipulator (bottom). The bond torsions correspond with the joint angles. Fixing the three first and
the three last atoms of the molecular chain is analogous to fixing the base and the end-effector of the manipulator.

J. Cortés et al. / Polymer 51 (2010) 4008e4014 4009
for the modeling of systems bearing complex architectures,
e.g. comblike polymers [27,28], it was not very useful for linear
molecules because of the difficulties to relax the interior segments
of chain molecules [23]. The third relaxation procedure was based
on the geometric aspects of the Concerted Rotation (ConRot)
method [23,29,30]. In this advanced MC procedure, a chain is
selected at random and interrupted at an arbitrary position, i, by
deleting the next L consecutive atoms of the main chain. Then, the
ConRot geometric algorithm joins the two segments of the inter-
rupted polymer chain rebuilding the positions for the L deleted
atoms. This relaxation algorithmwas successfully used to study the
properties of polymers with conventional architectures, e.g. linear
polyethylene (PE), in the amorphous state [23,31].

In this work, we propose an improvedMC-like algorithm for the
relaxation of linear amorphous polymers, which is shown to be
significantly more effective than the previous method based on
ConRot. More specifically, we have implemented a geometric
trimer rebridgingmethod inspired by robotics. Themolecular chain
is modeled as an articulated mechanism, and then, an inverse
kinematics (IK) method is applied to generate moves that satisfy
geometric constraints. A similar approach was proposed byWu and
Deem [32] for the theoretical study of the cis/trans isomerization of
proline-containing cyclic peptides. More generally, the application
of robot kinematics methods to solve problems related with
molecular modeling has lead to effective techniques for protein
loopmodeling, or for the conformational analysis of cyclic molecule
[33e39]. However, to the best of our knowledge, such methods
have not yet been used to study dense multichain macromolecular
systems. The work is organized as follows. Next section provides
a detailed description of the intramolecular rebridging relaxation
method inspired by robotics. Next, the geometric ConRot strategy is
briefly reminded. The performance of the two relaxation methods
Fig. 2. Six solutions for the trimer rebridging problem in Fig. 1: the original confor-
mation (plain line), and five alternative ones (dashed lines).
is then evaluated and compared using amorphous PE as test
system. Several tests are carried out to analyze the influence of the
size of the system, the number of chains, and the density on the
efficiency of the two methods. It should be emphasized that
amorphous PE is a very well-known system, whose properties have
been extensively investigated using very different simulation
methods. Accordingly, wemainly focused on the efficiency of the IK
and geometric ConRot procedures, analyses of the PE relaxed
microstructures being reduced to a few structural parameters.
Finally, the conclusions are outlined and some possible extensions
of this work are proposed.

2. Intramolecular rebridging by inverse kinematics

This section describes a geometric trimer rebridging method
inspired by robotics. The idea is illustrated in Fig. 1. Next subsection
formulates the trimer rebridging problem, making an analogy
between a molecular chain and an articulated mechanism. Then,
the adopted solution method is described, and the particular
application in the context of polymer relaxation is explained.

2.1. Problem formulation

Consider a molecular chain segment formed by 9 consecutively
bonded atoms, in which bond lengths and bond angles are kept
fixed at their equilibrium values, i.e. dihedral angles are the only
degrees of freedom. If the first three atoms {0,1,2} and the last three
ones {6,7,8} are kept fixed at their positions, the six dihedral angles
(f1ef6) only accept sets of values able to satisfy this geometric
constraint. Obviously, the positions allowed for the three atoms in
the middle {3,4,5} are univocally determined by the values of the
dihedral angles. According to these considerations, the trimer
rebridging problem consists in finding the admissible values of the
six dihedral angles.

In order to solve this problem, an analogy is proposed between
a molecular chain in which the dihedral angles are the only
degrees of freedom and an articulated mechanism composed of
rigid bodies connected by revolute joints, such as a robotic
manipulator. According to this, the trimer rebridging problem is
analogous to the IK problem for a six revolute (6R) jointed
manipulator: obtain the values of the 6 revolute joints that satisfy
a given pose of the end-effector with respect to the base. From the
seventies, this problem has deserved much attention within the
robot kinematics community, effective solutions being currently
available for particular geometries, i.e. particular relative locations
of consecutive joints, as well as for the general case. In general, the



Table 1
Efficiency (EF; in %) of the 6R IK and geometric ConRot relaxation methods for the
multichain polyethylene (PE) systems tested in this work. EF is defined as the
average reduction (in %) of the energy, with respect to the generated microstruc-
tures, after the application of a given number relaxation steps. For each PE system
the number of chains (N), the number of atoms per chain (M) and the density (r) are
indicated.

{N, M} r (g cm�3) Geometric ConRot 6R IK

1000 steps 5000 steps 10000 steps 1000 steps

4, 400a 0.85 8 25 36 43
2, 200b 0.85 23 47 55 70
4, 200b 0.85 14 36 45 57
8, 400b 0.85 4 16 25 28
8, 800b 0.85 2 10 16 17
4, 400b 1.00 7 22 31 39
4, 400b 1.10 6 20 28 35
4, 400b 1.20 5 18 23 31

a EF values calculated considering 1000 and 50 PEmicrostructures were identical.
b EF was calculated considering 50 microstructures.
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6R IK problem has a finite number of solutions, with an upper
bound of 16 [40]. Fig. 2 represents the solutions to the problem
illustrated in Fig. 1.

2.2. 6R IK solver

The method applied in this work for solving the 6R IK problem
has been adapted from the general solver proposed by Renaud
[41,42]. This solver is based on algebraic elimination theory, and
develops an ad-hoc resultant formulation inspired by the work of
Lie and Liang [40]. Starting from a system of equations representing
the IK problem (the formulation involves the product of homoge-
neous transformation matrices), the elimination procedure leads to
an 8 � 8 quadratic polynomial matrix in one variable. The problem
can then be treated as a generalized eigenvalue problem, as was
previously proposed by Manocha and Canny [43], for which effi-
cient and robust solutions are available [44] (our implementation
uses the LAPACK routine DGGEV [45]). Technical details on the
applied IK solver are provided in the report of Renaud [46].
Fig. 3. Comparison between the energies resulting from the generation algorithm, the
energies obtained after 1000 steps of 6R IK relaxation, and the energies obtained after
1000, 5000 and 10,000 steps of geometric ConRot relaxation for a set of 1000 PE
microstructures constituted by 4 chains and 400 pseudoparticles per chain
(r¼ 0.85 g cm�3).
The overall code of the 6R IK solver, programmed in language
C/Cþþ, has been optimized to achieve very fast computation.
Solutions are computed in 0.4 ms on a single processor (tests were
performed on a single core of a 2.4 GHz Intel Core Duo processor).
It should be noted that a variant of this method has been
successfully applied to model long protein loops [35].
2.3. Application to heterogeneously ordered multichain polymeric
systems

The 6R IK solver has been adapted to generate intermolecular
rebridging moves applying similar conditions to those used for the
geometric ConRot algorithm in our previous work (see below) [23].
Thus, a random perturbation of a few degrees is applied to the
dihedral angle preceding f1, i.e. the dihedral angles that defines the
rotation around the bond formed by atoms 0 and 1 in Fig. 1. Then,
the 6R IK solver computes the new conformations of the trimer able
to satisfy the geometric constraints of the molecular chain. Since
microscopic reversibility is not required in the framework of
relaxation, all the solutions provided by the solver are feasible
moves. Note that the computing time needed for the solver to
obtain a single solution (the one corresponding to a continuous
motion produced by the perturbation) is approximately the same as
that required for obtaining all the solutions.
3. Geometric ConRot

Consider a randomly selected atom, e.g. atom 2 in Fig. 1, within
amolecular chain, the L consecutive atoms are deleted (in this work
L¼ 4). The procedure used to rebuild the positions of the deleted
atoms can be summarized in the following two steps: (i) the
dihedral angle formed by atoms {0,1,2}, whose coordinates remain
fixed, and the first deleted atom {3}, that is f1, is changed by adding
a random perturbation of a few degrees; and (ii) the position of the
other three deleted atoms {4,5,6} is determined by numerically
solving a system of equations involving constant values of bond
lengths and bond angles imposed by the fixed geometry of the
chain. Thus, only one of the seven dihedral angles involved in
a move with L¼ 4 is considered as an independent variable, with
the rest being imposed by the internal geometry of the system.
According to this, the geometric ConRot and the intramolecular
rebridging by IK strategies essentially differ in the solver: the
former uses a numerical procedure [29], while the latter applies an
analytical method [42]. Finally note that, in average, the CPU time
required to solve the geometric trimer rebridging problemwith our
implementation of ConRot is 1.3 ms.
4. Test calculations

4.1. Simulated systems and force-field

Systems formed by N PE chains, each one containing M CH2
pseudoatoms (CH3 at chain ends) connected by rigid bond lengths
(1.526 Å) and angles (112.4�), have been used to compare the effi-
ciency of the 6R IK and the geometric ConRot relaxation methods.
Specifically, the PE microstructures considered in this work were
defined by the following {N,M} values: {2200}, {4200}, {4400},
{4600}, {4800} and {8800}.

The intramolecular interactions between two pseudoatoms
separated by more than four bonds and all the intermolecular
interactions, i.e. non-bonding interactions, have been represented
by a pairwise additive Lennard-Jones 12e6 potential:
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Eij ¼
Aij

r12ij
� Bij

r6ij
(1)

where Aij ¼ 3ijR12ij , Bij ¼ 23ijR6ij ,3ij ¼ 3i3j and Rij ¼ Ri þ Rj. The van
der Waals parameters (3i and Ri) of CH2 and CH3 pseudoatoms have
been taken from the Amber force-field: [45] 3(CH2)¼ 0.12 kcal/mol,
3(CH3)¼ 0.15 kcal/mol, R(CH2)¼ 1.925 Å and R(CH3)¼ 2.000 Å. On
the other hand, the dihedral angle interactions have been described
using the following torsional potential:

E4 ¼
X3

n¼1

Vn

2
ð1þ cosðn4� gnÞÞ (2)

where Vn is a force constant, n is the multiplicity factor and gn is
phase angle. The torsion around the CH2eCH2 and CH2eCH3 bonds
have been represented using the following parameters:
V3¼ 2.0 kcal/mol and gn ¼ 0�. A scale factor of 0.5 has been applied
to reduce all the non-bonding interactions within atoms of the
same chain separated by exactly three bonds (1e4 interactions).
The scaling of the 1e4 interactions is consistent with the analytical
energy expression showed above and the potential energy
parameters of the Amber force-field [46].
4.2. Generation of microstructures

Representative microstructures of amorphous PE defined by {N,
M}¼ {2200}, {4200}, {4400}, {4800} and {8800} were generated at
the experimentally observed density (r ¼ 0.85 g cm�3) using
a previously reported algorithm [21,22], which is briefly reminded
below. In addition, {4400} multichain PE microstructures were
generated at higher densities (r ¼ 1.00, 1.10 and 1.20 g cm�3).

The generation method packs polymer chains in a box of given
dimension, i.e. at a given density, inducingminimum torsional strain,
which is achieved by multiplying the radii Ri by a scale factor l. The
coordinates of the N M atoms of radii {l$Ri} are generated atom-by-
atom and chain-by-chain according to the following procedure: (i)
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three bonded atoms of the first chain are placed at arbitrary posi-
tions within the simulation box; (ii) a number, k, of positions are
randomly generated for the fourth atom and the energy associated to
every position, {Ej, j ¼ 1,., k}, is calculated. One position is chosen
through a typical Metropolis MC acceptance criterion; (iii) k posi-
tions are generated for the fifth atom, which are categorized as
unfeasible or feasible depending if atomic overlaps with the atoms
previously generated and separated by more than three bonds exist
or not, respectively. The energy of the j feasible positions (j� k) is
used in the Metropolis criterion mentioned above to select one,
while the unfeasible positions are discarded. This point is repeated
for the remaining atoms of the chain; (iv) the coordinates of the
M atoms of the next chains are generated using the same strategy.
The only difference affects the positions of the first three atoms,
which are found using a random search procedure to avoid steric
clashes with the atoms belonging to chains created previously.

It should be emphasized that the energy of the generated
positions, Ej, is in all cases evaluated as the sum of the torsional and
van derWaals contributions associated with the particles separated
from j by three chemical bonds (1e4 interactions). The omission of
interactions different from 1 to 4 notably reduces the CPU effort,
whereas, at the same time, a minimum torsional strain for the
generated chain is guaranteed. Obviously, the van der Waals
energies are calculated using the unscaled atomic radii Ri, the
scaled radii being exclusively used to examine the overlapping
between the atoms at the k generated positions. All the structures
generated in this work were obtained using l ¼ 0.69, which was
found to provide good results for amorphous PE [22].
4.3. Comparison of the two relaxation methods

The efficiency of a relaxation method (EF) is defined as the
average reduction (in%) of the energy, with respect to the generated
microstructures, after the application of a given number relaxation
steps. Table 1 lists the EF for all the PE systems considered in this
work.

Initially, the performance of the intramolecular rebridging by IK
and the geometric ConRotwas compared by considering the {4400}
PE (r ¼ 0.85 g cm�3). Fig. 3 shows, for a set of 1000 representative
structures: the energies of the generated structures, the energies
obtained after 1000 steps of 6R IK relaxation, and the energies
achieved after applying 1000, 5000 and 10,000 steps of geometric
ConRot. As it can be seen, the latter method needs a relatively large
number of steps to achieve a significant reduction in the energy.
Thus, after 1000, 5000 and 10,000 steps of relaxation, the energy of
the generated microstructures decreases in average by 8%, 25% and
36%. In contrast, the EF amounts to 43% after applying only 1000
steps of 6R IK. Accordingly, the later relaxation algorithm is not only
faster but also significantly more efficient than the geometric
ConRot for medium size heterogeneously ordered multichain
systems.

Fig. 4 analyzes the influence of the size of the chains and the
number of chains in the efficacy of the two relaxation algorithms by
comparing the energies of 50microstructures generated for {2200},
{4200}, {4400} and {8400} and {8800} systems (r ¼ 0.85 g cm�3 in
all cases) before and after relaxation. As it was expected, the EF
provided for the {4400} system (Fig. 4c) is identical to that
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displayed in Fig. 3 for a set of 1000 independentmicrostructures, i.e.
the energy decreases 43% and 36% after 1000 steps of 6R IK and
10,000 steps of geometric ConRot respectively, indicating that
results obtained for 50 microstructures are statistically represen-
tative. The EF of the 6R IK (Table 1) increases to 70% and 57% for the
{2200} and {4200} systems, respectively, while decreases to 28%
and 17% for {8400} and {8800} systems. These results clearly reflect
that this relaxation method becomes less efficient when the
number of pseudoatoms contained in the system increases through
the size of the individual molecules and/or the number of chains.
On the other hand, the energy reduction achieved after apply
10,000 steps of geometric ConRot on the same PE microstructures
generated for the {2200}, {4200}, {8400} and {8800} systems
amounts to 55%, 45%, 25% and 16%, respectively, revealing a very
similar behavior. Indeed, Fig. 4e clearly shows that the degree of
relaxation reached by the two methods is very close for the largest
system. In spite of this, it should be emphasized that the efficiency
of the 6R IK solver is significantly higher than that of the geometric
ConRot, since the number of steps required for similar energy
reductions differ in one order of magnitude.

The influence of the density on the efficiency of the two relax-
ation methods has been examined by considering 50 PE micro-
structures generated considering the {4400} system at r ¼ 0.85,
1.00, 1.10 and 1.20 g cm�3. The variation of the energy upon relax-
ation is displayed in Fig. 5. As it can be seen in Table 1, after 1000
steps of 6R IK the EF decreases from 43% to 31% when the r
increases from 0.85 to 1.20 g cm�3, while the evolution of the EF
reached upon 10,000 steps of geometric ConRot drops from 36% to
23%. Thus, although the 6R IK was the most efficient method in all
cases, the relative variation of the EF with the density was similar
for the two relaxation procedures.

The reliability of the PE structures relaxed using the 6R IK solver
and the geometric ConRot algorithm has been investigated by
analyzing the radius of gyration (Rg) and the end-to-end distance
(Ree). The Rg of PE is well described by:

Rg ¼ bNy (3)

where N is number of CH2 groups (N) and y is an universal coeffi-
cient close to 0.5. A coefficient y¼ 0.50 has been predicted by ideal
RIS chains, while numerous computer simulations using atomistic
and coarse-graining models have provided y values ranging from
0.52 to 0.59 [47e49]. Fig. 6a represents lnhRgi as a function of lnN
for {4200}, {4400}, {4600} and {4800} relaxed PE microstructures
(r ¼ 0.85 g cm�3), where the bracket refers to the average overall
conformations. As can be seen, lnhRgi depends linearly on lnN, the
correlation coefficients derived from the fittings being R2¼ 0.999 in
all cases. The parameter y deduced for the microstructures relaxed
using the IK and geometric ConRot methods is 0.548 � 0.012 and
0.539 � 0.009, respectively. Thus, taking into account the statistical
errors associated to simulation results, it can be stated that the two
slopes are equal (Fig. 6a).

On the other hand, Ree and Rg are related by:

D
R2ee

E
¼ 6

D
R2g

E
(4)

Fig. 6b represents hR2gi against hR2eei for the {4200}, {4400},
{4600} and {4800} relaxed PE microstructures. The linear regres-
sions of the two sets of points, hR2eei ¼ c$hR2gi, provided the
following coefficients: c¼ 6.14� 0.14 (6 K IR solver) and 6.00� 0.22
(geometric ConRot), the regression coefficients being R2> 0.99.
Notice that an excellent agreement with the ideal behavior dis-
played in Eqn. (4) was obtained in the two cases.
5. Conclusions

A new efficient procedure originating from robotics has been
proposed to relax microstructures of heterogeneously ordered
multichain systems in which the dihedrals angles are the only
degrees of freedom. Within this method, a molecular chain is
modeled as an articulated mechanism, and moves that satisfy
geometric constraints are analytically obtained using a 6R IK solver.
This relaxation method results particularly useful when it is
combined with a good generation algorithm. Thus, such combina-
tion permits to obtain independent representative microstructures
of amorphous polymers with minimal computational resources.
The efficiency of the proposed IK method has been compared with
that of the geometric ConRot, which was found to be a very
powerful numerical method derived from advanced MC strategies.
Test calculations using PE microstructures (polybeads) considering
variation in the number of polymer chains, size of the chains and
density show that the relaxationmethod using 6R IK is significantly
more efficient and faster than the one using the geometric ConRot.

Theresultspresented in thispaperonly involve theaforementioned
localmoves generatedbyperturbingonedihedral angle. Nevertheless,
other types of moves can also be generated using the proposed
approach. For instance, the bond torsion following46, i.e. the torsionof
the bond between atoms 7 and 8 in Fig. 1, could also be perturbed.
Besides, perturbations of bond lengths and bond angles in the
considered 9-atom segment could also be introduced before applying
the 6R IK solver. Another possible extensionwill be the application of
the 6R IK solver to generate moves involving non-consecutive bond
torsions. This is feasible because the solver does not require consecu-
tive revolute joint axes tobe co-punctual, i.e.6dihedral angles couldbe
arbitrarily chosenwithin the whole macromolecular chain.

Finally, mention that the proposed rebridging moves are fully
compatible with other types of moves such as chain-connectivity
altering moves (e.g. end-bridging), which are able to better
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equilibrate long-length-scale conformational properties of poly-
mers. Indeed, averyeffective relaxationmethod for general polymer
systems should be obtained by a suitable combination of moves.
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